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Letters
Samarium(II)-induced ring-expansion reaction of 1,2-
cyclobutanedicarboxylates to produce cyclopentanones
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Abstract—Novel ring-expansion reaction of 1,2-cyclobutanedicarboxylates with Sm(II) in the presence of HMPA with a catalytic
amount of methanol was found to provide 2-oxocyclopentanecarboxylates.
� 2003 Elsevier Ltd. All rights reserved.
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Cyclopentanones are structural constituents present in
numerous natural products, which serve to make up a
polycyclic framework or isolated ring. Tandem reduc-
tive coupling-Dieckmann condensation of bis-a,b-
unsaturated ester v was recently noted to produce
bicyclic cyclopentanones ii (n¼ 1 or 2), a process in-
duced by samarium(II)iodide (SmI2) via iii and iv
(Scheme 1).1 The formation of oxocyclopentanecarb-
oxylates ii (n¼ 3, 4) failed to occur by the above cycli-
zation, though it was considered that reductive ring
cleavage of the cyclobutane ring activated by a 1,2-
bis(alkoxycarbonyl) group would possibly serve as an
alternative means for generating intermediate iii to
produce cyclopentanones ii bearing carbocycles of var-
ious sizes. The present paper describes novel ring-
expansion reaction of 1,2-cyclobutanedicarboxylates i to
afford ii (n¼ 1–4) via Sm(II)-induced tandem reductive
fragmentation-Dieckmann condensation.2

Ring transformation precursors 2, 3, 4 and 5 were pre-
pared from the corresponding cycloalkenes 1 (n¼ 1–4)
in three steps,3 (1) photocycloaddition with maleic
anhydride,4 (2) methanolysis and (3) methylation, as
shown in Scheme 2. Precursors 65, 76 and 87 were pre-
pared according to the literature.

The results of reactions of dimethyl 1,2-cyclobutanedi-
carboxylates 2–8 with Sm(II) are summarized in Table 1.
On treating cyclobutanedicarboxylate 2 possessing a cis
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ring juncture with SmI2 (3 equiv), HMPA (12 equiv) and
methanol in trace amount in THF at 0 �C, methyl 3-
oxobicyclo[3.3.0]octane-2-carboxylate 9a8 was obtained
as a single isomer in 44% yield (entry 1). Higher reaction
temperature (50 �C) gave a mixture of 9a (45%) and
unexpected 9b9;10 (12%) possessing a trans ring juncture,
but the total yield of 9 was noted to have increased
(entry 2). HMPA addition is crucial for this reaction and
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Table 1. Sm(II)-induced ring-expansion reaction of dimethyl 1,2-cyclobutanedicarboxylatesa

Entry Esters Conditions Products Yieldb (ratio

of a:b)Temp (�C) Time

1

CO2Me

CO2Me
H

H

7

6

0 �C 2h

CO2Me

O

H

H

44%

2
9ac

2 2 50 �C 1h 9a

CO2Me

O

H

H

1
2

5
57% (3.8:1)d

9b

3

CO2Me

CO2Me

50 �C 1h O

CO2MeH

H

O

CO2MeH

H

71% (2.6:1)d ;f

3e 10a 10b

4

CO2Me

CO2Me
50 �C 3h O

CO2MeH

H

O

CO2MeH

H

79% (1.6:1)d

4e 11a 11b

5

CO2Me

CO2Me
50 �C 1.5 h O

CO
2
MeH

H

O

CO2MeH

H

68% (1:1.5)d

5e 12a 12b

6 CO2Me
CO2Me

50 �C 1.5 h

CO2Me

O
38%

6 13c

7g

Ph

Ph CO2Me

CO2Me4

3

50 �C 1h
O

CO2Me
Ph

Ph 4

5

O

CO2Me
Ph

Ph

39% (1:1.5)d

7 14a 14b

8h

CO2Me

CO2Me

rt 2.5 h
O

CO2Me

41%

8 15

a SmI2 (3 equiv), HMPA (12 equiv) and trace amount of MeOH were used.
b Isolated yield.
c This compound has the enol form.
dCompounds 10a/10b were inseparable. Compounds 9a/9b, 11a/11b, 12a/12b and 14a/14b could be separated.
e A mixture of diastereomers was used.
fDetermined by 1H NMR (300MHz) analysis.
g SmI2 (5 equiv), HMPA (20 equiv) and trace amount of MeOH were used.
h SmBr2 (5 equiv), HMPA (20 equiv) and trace amount of MeOH were used.
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in the absence of which the reaction virtually fails to
occur. SmI2-HMPA treatment of cyclobutanes 3, 4 and
5, having cyclohexane, cycloheptane and cyclooctane
rings, respectively, and each of these cyclobutanes being
a diastereomeric mixture comprised of three compo-
nents,11 provided bicyclic cyclopentanones 10
(10a:10b¼ 2.6:1),8 11 (11a:11b¼ 1.6:1)9;12 and 12
(12a:12b¼ 1:1.5)9;12 in 71, 79 and 68% yields, respec-
tively (entries 3, 4 and 5). Neither bicyclo[5.3.0]decane
11 nor bicyclo[6.3.0]undecane 12 could be obtained by
the previously reported SmI2-induced tandem cycliza-
tion of bis-a,b-unsaturated ester.1 The tricy-
clo[5.2.1.02;6]decane derivative and monocyclic
cyclopentanones could also be obtained by the present
method. Reaction of dicarboxylate 6 with SmI2-HMPA
and catalytic amount of MeOH provided tricyclic keto
ester 131 as a single isomer (entry 6), while that of
3,4-cis-dicarboxylate 76 resulted in a mixture of 4,5-
cis-cyclopentanone 14a1 and 4,5-trans-isomer 14b.1 Ste-
rically congested 3,3,4,4-tetrasubstituted cyclobutanedi-
carboxylate 8 does not react with SmI2-HMPA, but on
treating 8 with SmBr2

13-HMPA, cyclopentanone 159

was obtained.

Unexpected isomerization at the ring junction via ring-
expansion reaction of 2 (entry 2) to give 9b may be
explained as due to generation of allylic radical 17 by
radical fragmentation of the cyclopentane ring in 16 and
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recyclization of 17 to produce radical 18, the trans iso-
mer of 16, as shown in Scheme 3.

In a typical experiment, a suspension of Sm (142mg,
0.946mmol) and 1,2-diiodoethane (243mg, 0.861mmol)
in THF (5.7mL) was sonicated for 1 h at room tem-
perature under argon. Following addition of HMPA
(0.60mL, 3.4mmol) and a solution of cyclobutanedi-
carboxylate 4 (69mg, 0.287mmol) and methanol (37 lg)
in THF (2.5mL), the mixture was stirred for 3 h at 50 �C
and the reaction was terminated with few drops of 30%
hydrogen peroxide14 and 1N HCl. The system was then
diluted with ether, washed with saturated NaHCO3,
saturated Na2S2O3 and water, dried and concentrated.
The crude product was purified by silica gel column
chromatography to give keto ester 11a (29mg, 48%
yield) and 11b (19mg, 31% yield).

In the present study, a method was established to bring
about novel ring-expansion reaction of 1,2-cyclobutane-
dicarboxylates, readily accessible from the correspond-
ing cycloalkenes, to produce cyclopentanones, through
application of the one electron transfer reagent Sm(II) in
the presence of HMPA and methanol in trace amount.
This paper reports the first instance of the transforma-
tion of cyclobutanes to cyclopentanes via tandem
reductive fragmentation-Dieckmann condensation.
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